#1: Appeal to Authority: basically, this is taking someone’s advice on it, presumably from some risk expert. Unfortunately, this is little better than the “trust me” argument.
#2: Safety in Numbers: you do what everyone else does. Pension funds often find themselves in this situation, especially with risk measures that compare them to their peers or to their benchmark. Let’s take tracking error, for example. It measures the volatility of the difference of the fund’s returns to its benchmark’s returns, and the idea is to have as low a tracking error as you can. While this may seem like a way to decrease risk, it really isn’t – it’s just a way to ensure that whatever happens to the benchmark (rise, crash, devaluation, etc.) is sure to happen to the fund. In general, the herd mentality works until it doesn’t, usually in a spectacular way.
#3: You’ve Seen it Before: familiarity breeds acceptance. Behavioural economics and cognitive sciences show us that humans are more likely to accept something just because they’ve heard the words before. Combined with point #2 above, this can pack a mean punch. Let’s take the case of using beta as a measure of risk.
#4: Test and Reject What Fails. This is the only method that consistently works. Back testing of Value-at-Risk, for example, can show when it works and when it doesn’t. Examining R-squared can tell you when beta is meaningful and when it’s not. As important as it is to verify that your risk analytics are working the way you expect, the critical thing is to stop using a given risk measure while it’s not working. While we’re at it, we should also look into what new risk measures have actually been shown to be more effective.
Dr. Damian Handzy is chair and chief executive officer, Investor Analytics.